Basically, there are two ways to submerge a boat: dynamic diving and static diving. Many model submarines use the dynamic method while static diving is used by all military submarines. Dynamic diving boats are submarines that inherently float that is, they always have a positive buoyancy. This type of boat is made to dive by using the speed of the boat in combination with the dive planes to force the boat under water. This is very similar to the way airplanes fly. Static diving submarines dive by changing the buoyancy of the boat itself by letting water into ballast tanks. The buoyancy is thereby changed from positive to negative and the boats starts sinking. These boats do not require speed to dive hence this method is called static diving.
Modern military submarines dive use a combination of dynamic and static diving. The boat submerges by filling the main ballast tanks with water. After that, the buoyancy is accurately adjusted with the trim tanks. Once underwater, the depth of the boat is controlled with the hydroplanes.
In the following, the dive methods are treated in detail. We will start with static diving because this is more important for real submarines.
Static Diving
The buoyancy of a submarine can be changed by letting water into the main ballast tanks (MBT). The MBT's can be located in three different ways: (a) inside the pressure hull, (b) outside the pressure hull as additional tanks, and (c) in between the outer hull and the pressure hull. Figure 1 shows the three possible configurations. Drawback of having the MBT inside the pressure hull is obvious: it takes up space that could otherwise be used for equipment, weapons or personnel. This MBT arrangement was used in the WW-I boats and other early submarines. The classical example of a boat with MBT's outside the pressure hull is the German Type VIIC but also American and Dutch submarines in WW-II used this design. Due to the location of the MTB's, they are called saddle tanks. Most modern military submarines use the space in-between the inner pressure hull and the outer hull as MBT.
Figure 1: Different locations of the main ballast tank. |
Figure 2: An Ohio class submarine venting the forward ballast tanks. |
Figure 3: Flooding of the main ballast tanks. |
Figure 4: Blowing of the main ballast tanks. |
Also the density of the surrounding water plays an important role. A well known example is the downstream area of a river where fresh and salt water mix leading to a different density than in the open sea. If a submarine enters such a region, the trim has to be adjusted. For military submarines an obvious action that changes the buoyancy of the boat is the launch of a torpedo. For this purpose, military submarines have a special ballast tank located in the vicinity of the torpedo room to compensate for the weight loss of the torpedo. Usually the water level in the MTT is adjusted using high pressure pumps rather than high pressure air because the latter makes much more noise. Some of the MTT tanks can however be emptied using pressurized air to get a quick blow in case of an emergency. Once a neutral buoyancy is obtained with the MTT's, the depth of the boat can be changed using the speed of the boat and the angle of the dive planes. This is thus dynamic diving, see below.
Figure 5: Location of the different tanks in a modern diesel electric boat. Picture adapted from Gabler (1987). |
Dynamic Diving
Once the boat is trimmed to more or less neutral buoyancy, the depth of the boat is controlled with the hydroplanes. To use the hydroplanes the boat requires speed to create a force on the tilted planes. At slow speeds, the fore hydroplanes are exclusively used to keep the boat at the required depth. The fore planes can be located on the hull near the bow or on the sail of the boat. Because bow mounted hydroplanes are located further from the center of gravity, the depth control is more accurate with these types. Arguments for locating the fore planes on the finn of the boat are (a) improved performance of the spherical sonar array in the bow because the fore hydroplanes generate noise and (b) bow mounted hydroplanes can be damaged during docking of the submarine. Penalties for placing the fore planes on the fin are (a) the operating gear takes up space in the fin where room badly is needed for the masts, (b) the ice breaking performance is decreased, (c) at periscope depth the planes are close to the surface so their performance is adversely affected by the surface turbulence and finally (d) the hydroplanes are closer to the center of gravity and are thus less effective. Note that while improving the Los Angeles class submarine (688I) the US Navy relocated the fore planes from the sail to the bow. At sufficiently high submerged speed (more than 12 knots), the fore planes are no longer needed to control the depth of the submarine. At these speeds, they are rotated in a neutral or slightly dive position. Because the fore planes generate noise, many submarines are capable of retracting the forward bow planes at high speeds. All this considering, we may conclude that (retractable) bow planes are more favorable. It may be added that the author is not aware of boats having both dive planes on the bow and on the sail.
Figure 6: Location of the dive planes and their angles during the dive of Figure 7. |
Figure 7: Angle of the dive planes during a drive. |
Figure 8 shows the positioning of the aft hydroplanes as used by military submarines. Type A is the configuration applied by many modern military submarines. The hydroplanes are located in front of the screw. Note that the rudder blades are of different size. The bottom plane is smaller than the top one so that the boat can be put on the bottom of the sea (bottoming). Types B and C have the hydroplanes behind the screw. This is a configuration used by older submarines. The hydroplanes behind the screw are still used by the double screw Russian Tango and India class boats. The arrangement of D has the rudder behind the screw but has the dive planes in front of it. This type of arrangement was used for the German 205 and 206 class boats. Type E has the hydroplanes tilted 45 degrees, the so called X-tail configuration. No distinction between the rudder and the dive planes can be made. To steer and dive the boat, all of the four hydroplanes are used. In old submarines each set of hydroplanes, fore dive, aft dive and rudder, were operated by a separate person that manually turned a control wheel to the desired angle. It is obvious that an X-tail can only be operated by electronics or computer control. Because all four planes are used for both horizontal and vertical movement, the control of the boat is more subtle. Due to the 45 degrees tilting of the hydroplanes, bottoming is made possible without having to decrease the size of the lower dive planes. The X-tail configuration is used by the Dutch Walrus (Figure 9), the Swedish Vatergotland and the Australian Type 471.
Figure 8: Positioning of the aft hydroplanes for single screw boats. (side, aft and top view). |
Figure 9: X-tail configuration of the Dutch Walrus Class, picture from Miller (1990). |
In the previous sections, the dive technology of real submarines was explained. It was shown that the bulk buoyancy of the boat is changed with the MBT followed by fine tuning with the MTT and finally the correct depth is maintained using the hydroplanes. Of course the ultimate model submarine should operate in exactly manner. Due to the small scale however, application of the real submarine technology is not always possible. In the following, some of the available model diving technologies will be treated.
Dynamic Diving Technology
The fully dynamic diving boats are the most simple model submarines available. These boats have an inherent positive buoyancy which means that they will float back to the surface if control is lost. This is a major advantage for model submarines. Two German model manufacturers sell dynamic diving submarines: Robbe The Seawolf (not the real one) and the U-47 (a Type VII-C boat) and Graupner sells the Shark. On the internet Charles Darley has an excellent web site showing the building of a fully dynamic submarine. To get a positive buoyant boat under water, the force on the hydroplanes has to overcome the upward force of the floating boat. This requires a combination of sufficient speed or sufficiently large hydroplanes. Of course the closer the boat is rigged towards neutral buoyancy the smaller the required downward force of the hydroplanes. Figure 10 shows the angle of the dive planes to keep a positive buoyant sub under water. At low speed both planes have a downward angle. The aft hydroplanes are needed to prevent the stern of the bow rising above the surface. Just like for the real boats, at sufficiently high speeds the aft hydro plane can be moved to a neutral position and depth control can be maintained with the fore plane only.
Figure 10: Angle of the dive planes, left low speed, right high speed.. |
| ||
Equation 1: Force acting on a hydroplane. |
Static Diving Technology
In real submarines, MBT's are filled by venting the air inside the tanks and are emptied by blowing compressed air in to them. For model submarines a number of alternative methods are available.
Vented ballast tank
The vented tank (Figure 11) can be used to decrease the buoyancy of the boat from positive to slightly positive (decks awash). If the flood valve is opened, the air can escape through the vent and water fills the tank. The tank can be emptied by pumping water out of the tank while air is sucked back into the tank through the vent. Note that in order for this system to work, the top of the vent line must be above the water level. That is why the vented tank cannot be used to give the boat neutral or negative buoyancy. With a filled tank the boat can dive using the hydroplanes. Note that if a bi-directional pump is used, the flood valve is not needed. To prevent water getting in to the ballast tank when running submerged, the diameter of the vent line should be kept small. Please note that the vented ballast tank is not very convenient as a ballast system.
Figure 11: Vented ballast tank. |
The flexible tank (Figure 12) consists of a rubber balloon placed inside a rigid tank. To flood the tank, the valve is opened and water is pumped into the tank. The valve is closed to prevent water getting out once the tank is flooded. The air originally present in the rigid tank is vented into the pressure hull of the boat. This will lead to an increase of the pressure inside the hull. If the volume of the ballast tank is not to large compared to the air volume inside the pressure hull this is not a problem. Note that the inside of the submarine is usually packed with equipment so the air volume is certainly not equal to the hull volume.
Figure 12: Flexible ballast tank. |
Figure 13: Flexible tank, empty and full, by Wilhelm Sepp. |
The pressure ballast tank (Figure 14) consists of a sealed ballast tank capable of with standing a significant pressure increase (5 bar or so). To flood the tank water is pumped into the tank with a high pressure water pump. Because the air in the ballast tank cannot escape the air is compressed. To empty the tank, the water pump pumps the water out of the tanks again. Note that because the pressure build-up inside the ballast tank it can never be completely filled. Assuming a maximum pressure of 5 bar inside the tank, about 80 percent of the volume of the ballast tank can be used.
Figure 14: Pressure ballast tank. |
Piston ballast tank
The piston ballast tank (Figure 15) consists cylinder and a movable piston, just like a giant syringe. The piston can be moved with a thread, a cogwheel and a small motor. The outer end of the cylinder is directly connected to the surrounding water. In the piston ballast tank no air is present. Just like the flexible tank the pressure inside the boat increased if the piston tank is filled with water. If the position of the cylinder is measured, for example with a linear potentiometer connected to the thread, the buoyancy of the boat can very accurately be adjusted. Due to the large stroke of the piston, these types of ballast tanks are mostly fitted horizontally, like in Figure 12. This means that during filling of the tank with water the axial center of gravity of the boat is affected. For example if the boat is balanced to run horizontally with a full ballast tank, the angle of the boat is no longer zero with an empty tank. This drawback can be overcome by using two piston tanks in the aft and bow section of the boat.
Figure 15: Piston ballast tank. |
Figure 16: Piston ballast tank by Norbert Bruggen. |
The membrane ballast tank (Figure 17) is a simplified version of the piston tank. It consists of a rigid disk that can be moved up and down with a thread connected to a motor, just like the piston tank. The disk is connected to the cylinder via a flexible rubber membrane. When the disk is retraced, water is allowed into the boat. A nice aspect of the membrane ballast tank is that the water tight sealing is very easy. As long as the rubber membrane is properly attached to both disk and tank, leaking is not possible. In a piston tanks the sealing between the piston and the cylinder is quite critical. Drawback of the membrane tank is that the stroke of the piston is not very large so the change in buoyancy of the submarine is not very large. To make optimal use of the membrane tank, the diameter of the cylinder should be rather large compared to its height. The system is however ideal for small, or micro, model submarines. Thorson Feuchter has a nice collection of boats based on this principle.
Figure 17: Membrane ballast tank. |
The bellow ballast tank (Figure 18) is a variation on the membrane ballast tank. Instead of a flat membrane a rubber bellow is used. This has the advantage that the stroke of the disk is increased so that more water can be taken into the boat. Rubber bellows of sufficient diameter, 5 to 10 cm or so, can be found in car parts shops. In cars they are for example used to seal off moving parts of the steering equipment. Under pressure, the zig-zag wall of the membrane may pop out, resulting in a sudden increase of the ballast volume (and sinking of the sub). To prevent this, it is recommended to fit the bellow inside a cylinder.
Figure 18: Bellow ballast tank. |
The liquid gas system (Figure 19) consists of a storage cylinder with pressurized gas, a ballast tank and two valves. This system resembles the ballast system of a real submarine very closely. To flood the tank, the valve in the vent line is opened and water is allowed into the tank via the opening in the bottom. If the required volume of water is taken in, the vent valve is closed. The tank can be emptied by forcing pressurized gas into the tank by opening the blow valve. If we want the model boat to be able to blow the ballast tank a number of times, the stored amount of gas should be sufficient. Carbon dioxide (CO2) is an option because cylinders with this gas are relatively cheap and readily available from Paint ball shops. In paint ball, cylinders of 50 to 500 gram are commonly used. If CO2 cylinders are used a reduction valve to bring back the pressure to about 2-3 bar is necessary. CO2 cylinders are also used in model Warships, an excellent web site giving information on CO2 cylinders is R/C Warship.
Figure 19: Gas operated ballast tank. |
Figure 20: A CO2 cylinder (14 oz). |
In the gas ballast system the electric valves used in the gas line (the blow valves) can be standard solenoid valves used in laboratory equipment. To prevent draining of the batteries, valves that are normally closed should be used. Using CO2 with a pressure reduction valve or liquid gas, the pressure at which they remain closed should be about 5 bars. Miniature solenoid valves can be obtained from Clippard.
The vent valves that let air out of the ballast tank to submerged the boat are different. The pressure difference between the air in the tank and that of the ambient air is only a couple of cm water. Therefore the opening of the vent valve should be quite large to let our air at a sufficient flow rate to get a realistic dive. Because the pressure difference is also quite small when the vent valve is closed, and thus the boat is submerged, we can make these valves ourselves. Note that many of the above-mentioned solenoid valves have an opening of less than 1 mm and do usually not like water getting in to it, these types of valves are not very suited.
Compressed air ballast tank
The ballast tank system that uses compressed air is identical the one used in real submarines. This system is similar to the gas operated ballast tank but in this case the gas bottle is replaced by a cylinder that is filled with a compressor. Small compressors can be found in car accessories shops. They sell small 12 volt compressors that are intended to inflate car tires. These compressors are capable of compressing air to about 6 to 8 bar. These pressures are high enough to be careful with the storage cylinder. It is smarter to buy a commercial cylinder or use a empty CO2 cylinder than to make one by your self. The pressure is however relatively low pressure if you consider the amount of gas that can be stored. If we would assume that the compressed air cylinder is half the size of the MBT, we can only blow the MBT two to three times. This is not much compared to CO2 or liquid gas systems. In general, boats with on board air compressors refill the air supply each time they run on the surface after a dive. Special care should be taken to prevent water being sucked into the compressor. To prevent this, the air intake should be fitted with a valve that closes if the boat is submerged.
Figure 21: Gas operated ballast tank. |
The venting of the MBT is controlled by three solenoid valves so that the air flow rate can be adjusted in three steps. To get a realistic dive of the model all three valves are opened simultaneously. Once close to neutral buoyancy, only one valve is used to regulate the depth of the model. In the model of Harry Grapperhaus, the MBT always remains partly filled.
Figure 22: Arrangement of the valves in the boat of Harry Grapperhaus. |
Remember the distinction made between the Russian and US/UK boats in section Static Diving? The Russian boats use a valve, the Kingston, to seal the bottom opening of the ballast tank to prevent water entering. The US/UK boats keep the ballast tank under pressure to prevent water entering. The designs of Figure 19 and 21 do not have a Kingston valve. In one only uses a gas ballast tank to adjust the buoyancy of the boat, one can run in to trouble. Let us assume that the ballast tank is halfway filled with water to get the boat at neutral buoyancy and the boat is at a depth of 1 meter. At 1 meter below the surface the pressure of the surrounding water is 0.1 bar as a result the pressure of the gas inside the ballast tanks is also at 0.1 bar. If we would move this boat upwards, the water pressure will decrease resulting in an expansion of the gas in the ballast tank. The expanding gas will force water out of the ballast tank so that the boat gets lighter and will rise even more. On the other hand, if we would move the neutral buoyancy boat downward, the gas in the tank is compressed and more water gets in to the ballast tank. This will sink the boat. We may conclude that boats with a partially filled gas ballast tank are inherently unstable. For model boats this may not be a problem as long as the depth of the boat is controlled by the hydroplanes. Stable depth control at zero velocity is however not possible. Of course if the boat is fitted with Kingston valves water cannot enter the ballast tank and the problem is solved. The author is not aware of any model boats equipped with Kingstons. A different way to get a stable depth control is to use the MBT either completely full or completely empty. The trim of the boat is obtained with separate trim tanks. This is the hybrid ballast system, see below.
Hybrid Ballast Systems
Just like real submarines use main ballast tanks (MBT) to submerge and main trim tanks (MTT) to rig the boat for neutral buoyancy, the ideal submarine should operated likewise. A nice example of such a boat is the one made by Ralf Diederich. This boat has a compressed air system as MBT. The air cylinder has a volume of 1.2 liters and is filled by two compressors to 6 bar. The tank is filled by two compressors to reduce the filling time.
Figure 23: Two compressors in Ralf Diederich's boat. |
Figure 24: Two compressors and one piston tank in the aft section of Ralf Diederich's boat. |
Figure 25: Design by George Garrett, 1878. [Compton-Hall, 1999]. |
For model submarines, a number of different ballast tanks systems were identified. These types can roughly be grouped into three different ways of operation: (a) mechanical attenuated systems (piston, membrane, bellow), (b) pump systems (flexible tank, pressure tank) and gas operated (CO2, liquid gas and pressurized air). The mechanical attenuated tanks are ones that control the buoyancy in the most accurate way but they are rather slow. Pump systems are relatively easy to construct because they use few parts. The gas operated tanks are the most complex systems but are very similar to the live scale submarine technology. With gas systems the blowing of the MBT can be carried out very fast, in fact even an emergency blow can be carried out! An accurate and realistic model boat can be constructed using a mix of these ballast systems.
Glossary
MBT: Main Ballast Tank
MTT: Main Trim Tanks
[PDF]